有理数怎么分类
有理数的分类
1、按有理数的定义分类
有理数分为:整数和分数。整数分为正整数、零、负整数;分数分为:正分数、负分数。
2、按有理数的性质分类
有理数分为正有理数、零、负有理数。正有理数分为正整数、正分数;负有理数分为负整数、负分数。
1、有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用。有理数分类的话可以分为两种,分别是正有理数和负有理数。
2、正有理数包括正整数和正分数,正有理数是指除了负数、0、无理数的数字,正有理数能精确地表示为两个整数之比。
3、负有理数包括负整数和负分数合,负有理数就是小于零并能用小数表示的数。有理数集的数可分为正有理数、负有理数和零。
]
有理数的乘法运算
1、同号得正,异号得负,并把绝对值相乘。
2、任何数与零相乘,都得零。
3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。
4、几个数相乘,有一个因数为零,积就为零。
5、几个不等于零的数相乘,首先确定积的符号,然后后把绝对值相乘。
有理数分为哪几类
如下:
一、按有理数的定义分类:
有理数分为:整数和分数。
(一)整数分为三大类:
1、正整数,即大于0的整数如,1,2,3······直到n。
2、零,既不是正整数,也不是负整数,它是介于正整数和负整数的数。
3、负整数,即小于0的整数如,-1,-2,-3······直到-n。(n为正整数)。
(二)分数的两种类型:正分数、负分数。
二、按有理数的性质分类:
有理数分为正有理数、零、负有理数。正有理数分为正整数、正分数;负有理数分为负整数、负分数。
1、有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用。有理数分类的话可以分为两种,分别是正有理数和负有理数。
2、正有理数包括正整数和正分数,正有理数是指除了负数、0、无理数的数字,正有理数能精确地表示为两个整数之比。
3、负有理数包括负整数和负分数合,负有理数就是小于零并能用小数表示的数。有理数集的数可分为正有理数、负有理数和零。
有理数可以怎么分类
有理数的分类如下:
按不同的标准有按定义分类、按符号进行分类两种;按定义分类有理数分为整数、分数;按符号进行分类有理数分为正有理数、零、负有理数。小数可以化为分数,所以把小数看成分数。
扩展资料:
有理数的认识
有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。
有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。
有理数a,b的大小顺序的规定:如果a-b是正有理数,则称当a大于b或b小于a,记作a>b或b<a。任何两个不相等的有理数都可以比较大小。
有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。
有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。
有理数命名由来
有理数这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。
有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。
但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。
有理数包括哪三类
有理数包括正数、0、负数。正数包括正整数和正分数,负数包括负整数和负分数。无理数指无限不循环小数,有理数和无理数是实数。
1、把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数。
2、所有的有理数都可以写成两个整数之比;而无理数不能。根据这一点,有人建议给无理数摘掉“无理”的帽子,把有理数改叫为“比数”,把无理数改叫为“非比数”。
3、有理数分为:整数和分数。整数分为正整数、零、负整数;分数分为:正分数、负分数。
4、按有理数的性质分类,有理数分为正有理数、零、负有理数。正有理数分为正整数、正分数;负有理数分为负整数。
5、无理数的分类含π的数,如2π等;根式,如:√5等。函数式,如:lg2,sin1°等。